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Abstract: Ethical decision-making in autonomous driving remains a fundamental challenge,
particularly in dilemma scenarios where vehicles must weigh passenger safety against potential harm
to pedestrians or property. In this work, we propose a reinforcement learning framework enhanced
with a Social Variational Autoencoder (Social-VAE) to capture interactive behaviors among traffic
participants. Ethical dilemmas are modeled through parametric two-lane scenarios, incorporating
sensitive variables such as pedestrian identity, passenger composition, and traffic signal states. A
nonlinear loss function balances vehicle self-damage and pedestrian harm, enabling continuous
control over steering, acceleration, and braking. Training and evaluation are conducted in the
CARLA simulator using the INTERACTION dataset to ensure realistic multi-agent dynamics. For
benchmarking, we adopt the PCLA leaderboard evaluation protocol, which provides standardized
comparison across safety, efficiency, and ethical trade-offs. Our results demonstrate that the proposed
framework achieves improved decision consistency and robustness in ethically challenging scenarios,
bridging moral reasoning with practical control policies in autonomous vehicles.

1. Introduction

The deployment of autonomous vehicles (AVs) in real-world traffic environments raises not only
technical challenges but also profound ethical concerns. Unlike conventional control tasks, ethical
decision-making in AVs requires balancing safety, efficiency, and moral responsibility in situations
where no outcome is cost-free. Classical examples include dilemma scenarios in which the vehicle
must choose between colliding with pedestrians or avoiding them by risking the safety of passengers
through a sudden lane change or barrier collision. Designing decision-making frameworks that are
both ethically principled and technically feasible remains an open research problem.

Existing studies have largely relied on rule-based systems or simplified binary-choice models,
which struggle to generalize to complex, continuous control settings. Moreover, ethical dilemmas are
inherently multi-agent, involving pedestrians, other vehicles, and dynamic environments where social
interactions strongly influence outcomes. This motivates the integration of data-driven learning
methods with simulation environments capable of reproducing realistic physical and social dynamics.

In this work, we propose a reinforcement learning framework augmented with a Social Variational
Autoencoder (Social-VAE) to explicitly model the stochastic and interactive nature of human
behaviors in traffic. Ethical dilemmas are formalized as a value-loss minimization problem, where
both pedestrian harm and self-damage are parameterized in a nonlinear loss function. To bridge theory
and practice, we employ the CARLA simulator for environment construction and the
INTERACTION dataset to train and validate socially-aware control policies under realistic driving
patterns.

To ensure reproducibility and benchmarking, we adopt the PCLA leaderboard evaluation protocol,
which measures performance across safety, efficiency, and ethical trade-offs. Our contributions can
be summarized as follows:

(1) We design a parametric ethical dilemma modeling framework that captures pedestrian identity,
passenger composition, traffic signals, and vehicle state.
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(2) We introduce a Social-VAE reinforced learning approach that generates socially consistent
driving behaviors in multi-agent environments.

(3) We implement and evaluate the framework in CARLA using the INTERACTION dataset, with
standardized benchmarking via the PCLA leaderboard.

This work bridges the gap between abstract ethical reasoning and practical control in autonomous
driving, offering a reproducible pathway toward ethically-aware AV decision-making.

(1) Innovative Use of Social VAE: Our approach incorporates RNNs equipped with LSTM units
[1]. This setup enables the generation of complex traffic scenarios that closely mimic real-world
interactions among vehicles.

(2) Attention Mechanism for Neighbor Encoding: An attention mechanism to encode the states of
neighboring vehicles considers the social features exhibited by these entities. This development is
critical in scenarios with dense traffics, ensuring model accuracy among vehicles in proximity.

(3) Practical Implementation on PCs: The methodology is designed to run on standard PCs,
enhancing accessibility and broadening testing capabilities.

2. Background

Caesar et al. (2020) [3] and Houston et al. (2020) [5] have noted that traditional datasets primarily
sourced from real-world driving are significantly limited due to the rarity of near-collision scenarios,
which are crucial for testing autonomous vehicle (AV) systems. While simulation platforms like
CARLA (Dosovitskiy et al., 2017) [4] and NVIDIA’s DRIVE Sim have addressed these issues by
providing controlled environments where diverse and uncommon scenarios can be tested, these tools
still struggle with replicating the dynamic complexity of real-world conditions.

Innovations by Bergamini et al. (2021) [2] have advanced the field by using deep learning
techniques such as variational autoencoders (VAEs) and GANSs to generate more plausible and
challenging traffic scenarios. Despite these advancements, existing simulations often fail to adjust in
response to the evolving behaviors of AV systems during testing, limiting their application in
developing robust decision-making frameworks for AVs.

To surmount these challenges, our approach incorporates the Social VAE [8] to create adaptive
traffic scenarios that more effectively test AV systems. This method simulates a broad range of
adversarial conditions within a learned traffic model, dynamically generating scenarios that provoke
specific undesirable behaviors from the AV. Unlike previous methods, our approach does not rely on
a set adversarial strategy; instead, it continuously adapts to the AV’s reactions, ensuring that the
scenarios are both realistic and tailored to test the AV’s unique capabilities thoroughly. This technique
aims to enhance the safety and reliability of AVs by providing a more comprehensive testing
framework that reflects the unpredictable nature of real-world driving.

3. Related Work

Xu et al.’s work [8] contributes to understanding pedestrian dynamics within traffic systems using
a sophisticated timewise VAE. This focus on pedestrian behavior. However, SocialVAE primarily
addresses pedestrian trajectories and does not extend to the intricacies of vehicular dynamics. Our
approach enhances the scope of traffic management systems to better predict complex traffic
interactions.

On the other hand, Rempe et al.’s research [6] emphasizes the generation of challenging vehicular
scenarios, employing a graph-based conditional VAE (CVAE) to create challenging traffic conditions.
This is pivotal for testing the limits of predictive capabilities under potential collision scenarios.
Although it is highly effective, STRIVE’s model training and simulation largely depends on hardware
requirements. Our approach replaced the CVAE with SocialVAE, which has a simpler configuration.
Thus, personal implementation on a PC or laptop becomes available.



4. Approach
4.1. Overall Structure

Following previous research [7], the scenario generation is approached as an optimization problem
that modifies agent trajectories in a baseline scenario derived from real-world data. The SocialVAE
method estimates the distribution of future trajectories for each agent in a scene, using historical
observations. It predicts each agent (ego vehicle)’s future independently and can handle scenes with
any number of agents. Undesirable outcomes include collisions, uncomfortable driving conditions,
and violations of traffic laws. The computation graph shows the state transfer inside the VAE. The
overall structure is shown in Fig. 1.

4.2. Ethical Scenario Construction

While the Social VAE module provides the ability to generate diverse and socially consistent
trajectories, it does not by itself impose ethical considerations. To explicitly model moral dilemmas,
we construct a set of parametric ethical scenarios in which the ego vehicle must resolve trade-offs
between passenger safety, pedestrian protection, and compliance with traffic rules. These scenarios
extend the baseline INTERACTION dataset with additional ethically sensitive parameters and are
instantiated within the CARLA simulator.

Scenario Design. We adopt the classical two-lane dilemma as a core template: the ego vehicle
encounters an unavoidable hazard and must either continue in its current lane, colliding with one or
more pedestrians, or swerve into a roadside barrier, endangering its passengers. To enrich this
template, we introduce the following parameter categories (also illustrated in Fig. 2):

* Pedestrian attributes: Annotated by age, social role, and group size, affecting ethical evaluation
weights.

* Passenger composition: Includes the number and type of occupants, impacting Ly

» Traffic signals and right-of-way: Encodes legality of pedestrian crossing, influencing £,

* Vehicle initial state: Parameterizes lane position, speed, and heading to determine feasible
evasive maneuvers.
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Figure 1 An overview of accident prone traffic trajectory generation with SocialVAE

It incorporates a recurrent neural network (RNN)-based VAE operating in a timewise manner with
stochastic latent variables generated sequentially for predicting trajectories. The observation

encoder’s attention mechanism takes into account the state n;; and social features k;; of each

neighboring entity. The diagram on the right illustrates the flow of states within the timewise VAE.
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Figure 2 Pipeline of Ethical Scenario Construction.

A baseline traffic scene from the INTER-ACTION dataset is augmented with ethical parameters,
including pedestrian attributes, passenger composition, traffic signals, and vehicle initial state.
Social VAE generates plausible trajectories for surrounding agents, while the ego vehicle’s actions
are evaluated using a multi-component ethical loss.

Value Quantification and Loss. Each outcome is mapped to a value-cost system to balance ethical
priorities. The total ethical loss is:

L=a Lgyr+pB- Lpedestrian + v Lryles 1)

where o, 3,y weight the importance of passenger safety, pedestrian harm, and traffic rule
compliance, respectively. This loss guides both the generation of ego trajectories and evaluation of
scenario difficulty.

Scenario Generation Mechanism. The pipeline (Fig. 2) combines:

(1) Retrieval of a baseline scene from the INTERACTION dataset.

(2) Injection of ethically annotated pedestrians and obstacles.

(3) Trajectory generation for surrounding agents using Social VAE to maintain realistic social
interactions.

(4) Ego vehicle control evaluation under continuous actions (steering, acceleration, braking) in
CARLA, using the multi-component ethical loss.

CARLA Implementation. Ethical parameters are dynamically adjustable through a scenario
parameter interface. This modular design ensures reproducibility, supports batch simulation, and
allows systematic benchmarking of AV planners under ethically challenging situations.

4.3. SocialVAE

Generative Model: Using the LSTM Structure,instead of directly predicting the absolute
coordinates, we define a displacement sequence dy,,...;;. The generative model is defined as Eq. 1,

where zi, d' and O'.; denote the latent variables introduced at time step t, the displacement sequence
and the observation sequence, respectively.

p(d " OID=TTE [up (did.0f T Z)p(zildi .0 )dz} 0

To implement the sequential generative model p(d.., l0}.7,2), we use LSTM where the state
variable h; is updated recurrently by h§=§(l//z d(zﬁ,dﬁ),h?l), where =T+1,...,T+H. The prior distribution
of Social VAE is conditioned and can be obtained from the LSTM state variable. The second term of
Eq. 1 can be expressed as Eq. 2, where 0 are parameters for a neural network to be optimized.

p(zld !,0{ T):=p,(Zi|hi™) (3)

Latent Space Sampling: The first component of the integral shown in Eq. 1 suggests that new
displacements are sampled from the prior distribution p, which depends on the latent variable z: and

incorporates both observations and earlier displacements as reflected by h.,. Thus, d§~p¢,( J2Lhih
represents the sampled displacement. where zi, hl; and ¢ denote conditioned latent variables,
previous displacements and the observation sequence, respectively. Therefore, we can obtain
xXi=x!+¥! ., d; as a stochastic estimation for the spatial position at time t.

Inference Model: To estimate the posterior distribution q over the latent variables, the entire GT
observation sequence from O).r, is utilized. This is denoted by Eq. 3, where t ranges from T + 1 to
T + H, and the initial state b, ;;,;=0. The backward state b’ transmits GT trajectory data from T + H

4



down to t, forming the posterior by combining information from both the backward state bﬁ and the
forward state h;.

bi=g(OLbi™") (4)

Observation Encoding: If there are multiple neighboring agents in the scene during the prediction
process. We need to treat the local observation from agent i to the scene at time t =2, ..., T as Eq. 4.
This includes data from agent and a combined representation of all its neighboring agents. s! is the
self-state of agent i, njt-ll- is the local state of neighbor agent jf f are learnable feature extraction

neural networks and w]’~ |i is the attention mechanism weight if t <T.

O§3=[fs(5§), i W}\i fn(n}ﬁ)] )

Training Loss: The VAE calculates the loss for backpropagation and network weight updates. The
loss is a combination
of several components:ming L, | +Lpec+Logy Ly

- KL Loss: Measures the difference between the encoded distribution and a standard normal
distribution.

L=wie Dt [, (2650 ) py(z bt )] (6)

- Adversarial Loss: Penalizes predicted trajectories that come too close to neighboring trajectories,

using Euclidean distance between the i-th predicted point and the j-th neighbor’s position, i.e. e; /=y -
nlJ.

1

- Jleiadl,)

- Average Weighted MSE: Weighted version of the mean squared error between original and
reconstructed data. Let w,=exp (-af) be the weight for time step t, where « is the decay rate.
L _ Z;r:l Wi ZEI (9t,i_yt,i)2 (8)
mse ZtT:l Wi
- Kinematic Loss: Penalizes deviations in velocities and angular velocities of the predicted
trajectories, where d,,Ad, are the displacement and angular velocity at time 7.

Liin=201 1 deey-diy+ 257 1 A0 -AB ], ©)

Final Position Clustering (FPC): FPC is implemented to improve the diversity of trajectories.
For each cluster, FPC selects the trajectory closest to the center, generating a diverse set of predictions,
as shown in Fig. 3. This approach reduces prediction bias by avoiding the over-representation of
trajectories from high-density regions.

Lo=YY, Z}\ﬁl exp <- ||ei,j||2> : -~ exp( (7
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Figure 3 An example of FPC to extract 3 predictions from 9 candidates

5. Experiments
5.1. Implementation Details

Dataset. To comprehensively evaluate autonomous vehicle (AV) decision-making in accident-
prone and ethically challenging situations, we utilize both real-world and synthetic data sources. The
INTERACTION Dataset [9] provides diverse traffic scenarios from global intersections, roundabouts,
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and highways, annotated with vehicle, pedestrian, and cyclist trajectories as well as traffic signal
states. This allows realistic modeling of agent interactions, social compliance, and rare near-collision
events. To extend scenario coverage to ethically sensitive and high-risk situations that rarely occur in
real-world datasets, we construct synthetic scenarios using RoadRunner [10], a high-fidelity scene
authoring tool. RoadRunner enables precise control over road topology, lane geometry, dynamic agent
behaviors, static obstacles, and traffic signal configurations.

Ethical scenarios are parameterized by agent attributes such as pedestrian age, mobility, and
priority, vehicle passenger composition, initial lane positions, and compliance with traffic rules. This
enables generation of forced-choice dilemmas, for instance, where the AV must select between
colliding with a pedestrian, another vehicle, or a static obstacle. Generated scenarios capture
variations in agent behavior, including sudden crossings, lane changes, and braking maneuvers,
reflecting the stochastic nature of real traffic and potential ethical conflicts. Social VAE [8] is then
used to generate multimodal trajectories conditioned on historical observations and ethical parameters,
incorporating attention mechanisms to model social interactions among agents and latent variables to
represent uncertainty and multimodality.

All scenarios, both real and synthetic, are executed in CARLA [4] to evaluate AV planners. Metrics
such as collision rates, near-misses, traffic rule adherence, and comfort indices are recorded, and the
impact of ethical parameters on AV decision-making is analyzed. Fig. 4 illustrates the full pipeline:
real-world data from INTERACTION informs baseline scenarios, RoadRunner constructs synthetic
ethical scenarios, Social VAE generates agent trajectories, and CARLA executes the scenarios for
evaluation. This hybrid approach enables rigorous testing of AV systems under realistic, accident-
prone, and ethically complex conditions.

Algorithm 1 SocialVAE Structure
1: class Social VAE:
2: function init_():

3: Initialize model parameters

4: Define sub-modules and RNNs

5: function attention(q, k, mask):

6: Compute & return attention weights

7: function enc(x, neighbor, y):

8: Compute social features

9: Update RNN state

10: Return final state

11: function forward(x, neighbor, n_predictions):
12: if training then Call learn function

13: Generate & return predictions

14: function learn(x, y, neighbor):

15: Encode inputs

16: Compute & return errors and losses

17: function loss(err, ki, L_adv_loss, avg weighted_mse_loss, Knematic_loss):
18: Compute & return total and individual losses

Figure 4 Hybrid pipeline for ethical and accident-prone scenario generation.
The real-world trajectories from the INTERACTION Dataset provide baseline data. RoadRunner



is used to construct synthetic scenarios with ethical annotations. Social VAE generates multimodal
agent trajectories conditioned on observations and ethical parameters. Scenarios are executed in
CARLA for AV evaluation.

Training. In [6], training was conducted on a computing cluster comprising an NVIDIA Titan
RTX GPU and 12 Intel 17-7800X @3.5GHz CPUs, offering significantly greater computational power
and memory than a personal computer. We utilized Social VAE and a smaller dataset, making training
feasible on a personal computer, while still achieving favorable results with the generated trajectories
within hours. Hardware and parameters we used are listed in Tab. 1. Training losses are plotted in
Fig. 6.

Training. Training was conducted on a high-performance computing server equipped with an
NVIDIA A100 GPU and dual Intel Xeon Gold 6230 CPUs @ 2.1GHz, providing substantial
computational power and memory to efficiently handle Social VAE training on the full dataset. This
setup allowed training of the model with larger batch sizes and longer prediction horizons while
maintaining reasonable runtime. Hardware specifications and hyperparameters are summarized in
Tab. 1. Training losses are illustrated in Fig. 6.

Table 1 Social VAE Training and Hyperparameters on Professional Server.

Hardware
Parameter Value Parameter Value
Computing 2x Intel Xeon Gold 6230
Platform NVIDIA A100 GPU CPU @ 2.1GHz
GPU Memory 40GB RAM 256GB
Hyperparameters
Parameter Value Parameter Value
Utilized Model Social VAE Observation Radius 10000
Prediction Time 25 Observation Time Steps 10
Steps
RNN H1dden 512 Latent Variable Dim 32
Layer Dim
Embedding Layer 128 Input Dim 2
Dim
Feature Dim 256 Batch Size 512
Learning Rate 1 x10-4 Weight Scaling Factor 0.1

5.2. Qualitative Results of Scenario Generation with Ethical Considerations

In this section, we present the qualitative results of our accident-prone traffic scenario
generation, emphasizing ethical decision-making aspects. By combining SocialVAE-based
trajectory generation with RoadRunner-constructed scenarios, our framework produces complex
situations that challenge autonomous vehicle planners with respect to both safety and ethical
considerations. The training reconstruction loss over epochs for Social VAE is shown in Fig. 5.
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Figure 5 The training reconstruction loss over epochs for Social VAE
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The plot illustrates the convergence of the model during training on the INTERACTION and
RoadRunner datasets, demonstrating stable optimization and gradual reduction in reconstruction
error.
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Figure 6 Training losses of SocialVAE

The variation trends of each loss term during training are shown in Fig. 6, where the average
weighted MSE loss, KL loss, and adversarial loss all steadily decrease with training steps, and
the total loss exhibits a continuous convergence trend, verifying the stability and effectiveness
of the model optimization.

5.2.1. Intersection EP1 Scenario

Fig. 7 shows the ego vehicle’s trajectory in the Intersection EP1 scenario, which is a multi-lane
urban intersection with moderate traffic density. RoadRunner was used to construct dynamic traffic
participants, including other vehicles with realistic acceleration and deceleration profiles.

 Ethical Context: The ego vehicle faces a potential head-on collision with an oncoming vehicle
if it maintains its planned lane. Alternatively, it could brake to avoid the collision, risking a rear-end
impact with the trailing vehicle. This scenario tests the AV’s ability to weigh passenger safety against
potential harm to other road users, a classic ethical dilemma in AV planning.

* Generated Trajectories: SocialVAE outputs multiple plausible trajectories, ranging from
aggressive maneuvers that maintain lane priority to conservative braking trajectories. The multi-
modal nature of SocialVAE captures the uncertainty in surrounding vehicles’ behavior and the
resulting trade-offs in ego decisions.

* Ethical Implication: The head-on collision trajectory highlights situations where strict
adherence to traffic rules may endanger other participants, whereas the rear-end collision
demonstrates the AV’s compromise between risk reduction and operational feasibility. These
trajectories provide rich test cases for evaluating AV decision-making under ethical constraints.

5.2.2. Roundabout FT Scenario

Fig. 8 illustrates trajectories generated in a complex roundabout, featuring interactions with both
other vehicles and pedestrians. RoadRunner was used to introduce dynamic pedestrians crossing the
roundabout unexpectedly, enabling the generation of ethical conflict scenarios.

* Ethical Context: The AV must balance pedestrian safety, compliance with traffic rules, and
smooth traffic flow. In this scenario, the vehicle may need to perform sudden braking or lane
adjustments to avoid a pedestrian, potentially causing minor collisions with other vehicles.

* Generated Trajectories: Social VAE generates a diverse set of trajectories, including:

(1) Pedestrian avoidance: the ego vehicle decelerates sharply to prevent hitting a pedestrian,
possibly leading to a rear-end collision.

(2) Aggressive lane-maintaining: the vehicle maintains its lane and speed, resulting in a side-
impact with other vehicles or a near-miss with pedestrians.

(3) Balanced maneuvering: the vehicle adjusts its trajectory smoothly, partially sacrificing lane
adherence to minimize harm to all participants.

* Ethical Implication: These trajectories illustrate the AV’s trade-offs among minimizing harm,
following traffic laws, and maintaining operational efficiency. They allow researchers to evaluate the
planner’s ethical reasoning and robustness in dynamic, multi-agent environments.



5.2.3. Multiple Scenario Trajectory Visualization

Fig. 9 shows a set of generated trajectories for both scenarios. Each color corresponds to a different
predicted trajectory sampled from Social VAE’s latent space, demonstrating the diversity of possible
outcomes.

* Trajectory Diversity: The figure emphasizes the multi-modality of the generated predictions.
Even within the same scenario, the AV may choose distinct maneuvers based on latent variables
capturing uncertainties in human driver behaviors and environmental conditions.

* Ethical Scenario Representation: By visualizing multiple trajectories, we can analyze which
ethical trade-offs are made under varying conditions, such as prioritizing pedestrian safety, reducing
collisions with vehicles, or preserving smooth traffic flow.

* Scenario Utility: These visualizations provide insight into edge cases where AVs face conflicting
ethical objectives, making them valuable for evaluating planners and refining policy design.

Overall, integrating SocialVAE with RoadRunner-generated scenarios produces ethically
challenging traffic situations with realistic multi-agent interactions. This approach facilitates rigorous
testing of autonomous vehicles, ensuring that planners are evaluated not only on collision avoidance
but also on their decision-making under ethical uncertainty.
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Accident Prone

Initial State Scenario vehicle collision

. .
Roundabout --hﬂ-
. FT ” &
A% Head-on collision
{ - o=
) = = SENG ) EE IS . RSNy
" Roundabout P ) ) - .
FT 5 ' I Broadside f
3¢ b b & - collisidhi &
[ Neighbor vehicles [ | Ego Vehicle Ego Venicte - Ground Truth |11 Ego Vehick - Attack Trejectory

Figure 8 Generated Trajectory in Roundabout Scenario



f
Attack Vehicle | Attack V chirli
= { 7 | ol I == I p |
= iy 1 P = S ——p

—_— 2 ] = —mad TR =

Ground Truth | = Ground Truth

(A) Generated
Accident Prone Trajectary Gensration

) (-l'ﬂl_lyllt{_,l\»ﬂl”k' ? / B
| (9 g ¢
.\un;l\ Vehicle ——] ( JT { L' veh
== _ }‘“:bmuudiﬂ?ﬁigi L " ——Attack Viehicle ——\ |
R R St by~ 027 == = \

— — — —— -
e i —— =Sk —

SN

Figure 9 Examples of generated accident-prone traffic scenarios.

The (a) and (b) in Figure 9 depict head-on and rear-end collision trajectories of the ego vehicle in
an intersection scenario. The (c) and (d) in Figure 9 show collisions involving pedestrians and side-
impact interactions in a roundabout scenario. These scenarios are constructed to evaluate autonomous
vehicle decision-making under challenging ethical and safety-critical conditions.

6. Discussion

In this work, we have presented a framework for generating ethically challenging traffic scenarios
using SocialVAE and RoadRunner, evaluated on real-world driving data from the INTERACTION
Dataset. The qualitative results demonstrate that our approach can produce a diverse set of trajectories
that highlight potential collisions, uncomfortable driving conditions, and ethical dilemmas, such as
prioritizing pedestrian safety versus vehicle occupant safety.

6.1. Ethical Implications

The generated scenarios provide a systematic method to explore edge cases in autonomous driving
where ethical decision-making is critical. Unlike conventional datasets that primarily focus on
common driving situations, our approach intentionally produces rare and challenging interactions. By
doing so, planners and reinforcement learning policies can be stress-tested for situations requiring
moral trade-offs, such as deciding between potential harm to pedestrians versus nearby vehicles. This
capability is crucial for the deployment of AVs in real-world conditions, where rare but high-impact
events may determine public trust and regulatory acceptance.

6.2. Trajectory Diversity and Social VAE Efficacy

SocialVAE demonstrates strong capability in modeling the multi-modal nature of agent
trajectories. The stochastic latent variables allow sampling of multiple plausible futures for each agent,
capturing uncertainties in human driving behavior and environmental interactions. The generated
trajectories vary significantly in both ego vehicle behavior and outcomes, providing a rich testbed for
evaluating AV decision-making under uncertainty.

6.3. Scenario Construction with RoadRunner

The integration of RoadRunner enables the creation of realistic, interactive, and repeatable
scenarios. By designing environments with dynamic agents and ethical conflict points, we can
systematically investigate planner robustness. The ability to programmatically manipulate agent
behaviors and scenario layouts ensures reproducibility while still reflecting the stochastic nature of
real traffic.
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6.4. Limitations

Despite the promising results, our framework has limitations. First, the ethical evaluation is
qualitative; quantifying moral decisions remains challenging. Second, Social VAE predictions are
constrained by the historical data distribution and may not fully capture extremely rare behaviors.
Third, RoadRunner scenarios, while realistic, may not account for all real-world variability, such as
weather effects or sensor noise.

6.5. Future Work

Future research could extend this framework in several directions. One avenue is integrating
explicit ethical reasoning modules into the trajectory planning stage, enabling the AV to weigh ethical
trade-offs quantitatively. Another direction is combining additional datasets, including diverse traffic
cultures and conditions, to improve generalization. Finally, closed-loop testing in simulated
environments with full AV control could validate the practical effectiveness of the generated ethical
scenarios, bridging the gap between scenario generation and autonomous vehicle deployment.

Overall, our study highlights the importance of ethically-aware scenario generation for
autonomous vehicles. By leveraging SocialVAE, RoadRunner, and real-world datasets, we provide a
methodology to systematically stress-test planners and reinforce safe and socially acceptable AV
behavior.
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Appendix

Appendix A. The Video Frame Sampling Visualization is shown in Figure 10.

Figure 10 Visualization of frames sampled from the video at 2 frames per second. Each row
contains 5 frames. This provides an overview of the temporal evolution of the scenario and
highlights key moments captured for scenario generation analysis.
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