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Abstract: Ethical decision-making in autonomous driving remains a fundamental challenge, 

particularly in dilemma scenarios where vehicles must weigh passenger safety against potential harm 

to pedestrians or property. In this work, we propose a reinforcement learning framework enhanced 

with a Social Variational Autoencoder (Social-VAE) to capture interactive behaviors among traffic 

participants. Ethical dilemmas are modeled through parametric two-lane scenarios, incorporating 

sensitive variables such as pedestrian identity, passenger composition, and traffic signal states. A 

nonlinear loss function balances vehicle self-damage and pedestrian harm, enabling continuous 

control over steering, acceleration, and braking. Training and evaluation are conducted in the 

CARLA simulator using the INTERACTION dataset to ensure realistic multi-agent dynamics. For 

benchmarking, we adopt the PCLA leaderboard evaluation protocol, which provides standardized 

comparison across safety, efficiency, and ethical trade-offs. Our results demonstrate that the proposed 

framework achieves improved decision consistency and robustness in ethically challenging scenarios, 

bridging moral reasoning with practical control policies in autonomous vehicles. 

1. Introduction 

The deployment of autonomous vehicles (AVs) in real-world traffic environments raises not only 

technical challenges but also profound ethical concerns. Unlike conventional control tasks, ethical 

decision-making in AVs requires balancing safety, efficiency, and moral responsibility in situations 

where no outcome is cost-free. Classical examples include dilemma scenarios in which the vehicle 

must choose between colliding with pedestrians or avoiding them by risking the safety of passengers 

through a sudden lane change or barrier collision. Designing decision-making frameworks that are 

both ethically principled and technically feasible remains an open research problem. 

Existing studies have largely relied on rule-based systems or simplified binary-choice models, 

which struggle to generalize to complex, continuous control settings. Moreover, ethical dilemmas are 

inherently multi-agent, involving pedestrians, other vehicles, and dynamic environments where social 

interactions strongly influence outcomes. This motivates the integration of data-driven learning 

methods with simulation environments capable of reproducing realistic physical and social dynamics. 

In this work, we propose a reinforcement learning framework augmented with a Social Variational 

Autoencoder (Social-VAE) to explicitly model the stochastic and interactive nature of human 

behaviors in traffic. Ethical dilemmas are formalized as a value-loss minimization problem, where 

both pedestrian harm and self-damage are parameterized in a nonlinear loss function. To bridge theory 

and practice, we employ the CARLA simulator for environment construction and the 

INTERACTION dataset to train and validate socially-aware control policies under realistic driving 

patterns. 

To ensure reproducibility and benchmarking, we adopt the PCLA leaderboard evaluation protocol, 

which measures performance across safety, efficiency, and ethical trade-offs. Our contributions can 

be summarized as follows: 

(1) We design a parametric ethical dilemma modeling framework that captures pedestrian identity, 

passenger composition, traffic signals, and vehicle state. 
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(2) We introduce a Social-VAE reinforced learning approach that generates socially consistent 

driving behaviors in multi-agent environments. 

(3) We implement and evaluate the framework in CARLA using the INTERACTION dataset, with 

standardized benchmarking via the PCLA leaderboard. 

This work bridges the gap between abstract ethical reasoning and practical control in autonomous 

driving, offering a reproducible pathway toward ethically-aware AV decision-making. 

(1) Innovative Use of SocialVAE: Our approach incorporates RNNs equipped with LSTM units 

[1]. This setup enables the generation of complex traffic scenarios that closely mimic real-world 

interactions among vehicles. 

(2) Attention Mechanism for Neighbor Encoding: An attention mechanism to encode the states of 

neighboring vehicles considers the social features exhibited by these entities. This development is 

critical in scenarios with dense traffics, ensuring model accuracy among vehicles in proximity. 

(3) Practical Implementation on PCs: The methodology is designed to run on standard PCs, 

enhancing accessibility and broadening testing capabilities. 

2. Background 

Caesar et al. (2020) [3] and Houston et al. (2020) [5] have noted that traditional datasets primarily 

sourced from real-world driving are significantly limited due to the rarity of near-collision scenarios, 

which are crucial for testing autonomous vehicle (AV) systems. While simulation platforms like 

CARLA (Dosovitskiy et al., 2017) [4] and NVIDIA’s DRIVE Sim have addressed these issues by 

providing controlled environments where diverse and uncommon scenarios can be tested, these tools 

still struggle with replicating the dynamic complexity of real-world conditions. 

Innovations by Bergamini et al. (2021) [2] have advanced the field by using deep learning 

techniques such as variational autoencoders (VAEs) and GANs to generate more plausible and 

challenging traffic scenarios. Despite these advancements, existing simulations often fail to adjust in 

response to the evolving behaviors of AV systems during testing, limiting their application in 

developing robust decision-making frameworks for AVs. 

To surmount these challenges, our approach incorporates the SocialVAE [8] to create adaptive 

traffic scenarios that more effectively test AV systems. This method simulates a broad range of 

adversarial conditions within a learned traffic model, dynamically generating scenarios that provoke 

specific undesirable behaviors from the AV. Unlike previous methods, our approach does not rely on 

a set adversarial strategy; instead, it continuously adapts to the AV’s reactions, ensuring that the 

scenarios are both realistic and tailored to test the AV’s unique capabilities thoroughly. This technique 

aims to enhance the safety and reliability of AVs by providing a more comprehensive testing 

framework that reflects the unpredictable nature of real-world driving. 

3. Related Work 

Xu et al.’s work [8] contributes to understanding pedestrian dynamics within traffic systems using 

a sophisticated timewise VAE. This focus on pedestrian behavior. However, SocialVAE primarily 

addresses pedestrian trajectories and does not extend to the intricacies of vehicular dynamics. Our 

approach enhances the scope of traffic management systems to better predict complex traffic 

interactions. 

On the other hand, Rempe et al.’s research [6] emphasizes the generation of challenging vehicular 

scenarios, employing a graph-based conditional VAE (CVAE) to create challenging traffic conditions. 

This is pivotal for testing the limits of predictive capabilities under potential collision scenarios. 

Although it is highly effective, STRIVE’s model training and simulation largely depends on hardware 

requirements. Our approach replaced the CVAE with SocialVAE, which has a simpler configuration. 

Thus, personal implementation on a PC or laptop becomes available. 
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4. Approach 

4.1. Overall Structure 

Following previous research [7], the scenario generation is approached as an optimization problem 

that modifies agent trajectories in a baseline scenario derived from real-world data. The SocialVAE 

method estimates the distribution of future trajectories for each agent in a scene, using historical 

observations. It predicts each agent (ego vehicle)’s future independently and can handle scenes with 

any number of agents. Undesirable outcomes include collisions, uncomfortable driving conditions, 

and violations of traffic laws. The computation graph shows the state transfer inside the VAE. The 

overall structure is shown in Fig. 1. 

4.2. Ethical Scenario Construction 

While the SocialVAE module provides the ability to generate diverse and socially consistent 

trajectories, it does not by itself impose ethical considerations. To explicitly model moral dilemmas, 

we construct a set of parametric ethical scenarios in which the ego vehicle must resolve trade-offs 

between passenger safety, pedestrian protection, and compliance with traffic rules. These scenarios 

extend the baseline INTERACTION dataset with additional ethically sensitive parameters and are 

instantiated within the CARLA simulator. 

Scenario Design. We adopt the classical two-lane dilemma as a core template: the ego vehicle 

encounters an unavoidable hazard and must either continue in its current lane, colliding with one or 

more pedestrians, or swerve into a roadside barrier, endangering its passengers. To enrich this 

template, we introduce the following parameter categories (also illustrated in Fig. 2): 

• Pedestrian attributes: Annotated by age, social role, and group size, affecting ethical evaluation 

weights. 

• Passenger composition: Includes the number and type of occupants, impacting ℒself. 

• Traffic signals and right-of-way: Encodes legality of pedestrian crossing, influencing ℒrule. 

• Vehicle initial state: Parameterizes lane position, speed, and heading to determine feasible 

evasive maneuvers.  

 

Figure 1 An overview of accident prone traffic trajectory generation with SocialVAE 

It incorporates a recurrent neural network (RNN)-based VAE operating in a timewise manner with 

stochastic latent variables generated sequentially for predicting trajectories. The observation 

encoder’s attention mechanism takes into account the state nj|i  and social features kj|i  of each 

neighboring entity. The diagram on the right illustrates the flow of states within the timewise VAE. 
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Figure 2 Pipeline of Ethical Scenario Construction.  

A baseline traffic scene from the INTER-ACTION dataset is augmented with ethical parameters, 

including pedestrian attributes, passenger composition, traffic signals, and vehicle initial state. 

SocialVAE generates plausible trajectories for surrounding agents, while the ego vehicle’s actions 

are evaluated using a multi-component ethical loss. 

Value Quantification and Loss. Each outcome is mapped to a value-cost system to balance ethical 

priorities. The total ethical loss is: 

ℒ = 𝛼 ⋅ ℒself + 𝛽 ⋅ ℒpedestrian + 𝛾 ⋅ ℒrule,                       (1) 

where α , β , γ  weight the importance of passenger safety, pedestrian harm, and traffic rule 

compliance, respectively. This loss guides both the generation of ego trajectories and evaluation of 

scenario difficulty. 

Scenario Generation Mechanism. The pipeline (Fig. 2) combines: 

(1) Retrieval of a baseline scene from the INTERACTION dataset. 

(2) Injection of ethically annotated pedestrians and obstacles. 

(3) Trajectory generation for surrounding agents using SocialVAE to maintain realistic social 

interactions. 

(4) Ego vehicle control evaluation under continuous actions (steering, acceleration, braking) in 

CARLA, using the multi-component ethical loss. 

CARLA Implementation. Ethical parameters are dynamically adjustable through a scenario 

parameter interface. This modular design ensures reproducibility, supports batch simulation, and 

allows systematic benchmarking of AV planners under ethically challenging situations. 

4.3. SocialVAE 

Generative Model: Using the LSTM Structure,instead of directly predicting the absolute 

coordinates, we define a displacement sequence dt+1:t+H
i

. The generative model is defined as Eq. 1, 

where zt
i, dt

i
 and O1:T

i
 denote the latent variables introduced at time step t, the displacement sequence 

and the observation sequence, respectively. 

 p(di
T+1:T+H

|Oi
1:T

)= ∏ ∫ p
zi

t
T+H
t=T+1 (di

t
|di

T:t-1
,Oi

1:T
,zi

t)p(zi
t|di

T:t-1
,Oi

1:T
)dzi

t (2) 

To implement the sequential generative model p(dt+1
i

|o1:T
i ,zt

i) , we use LSTM where the state 

variable ht
i
 is updated recurrently by hi

t=g⃗ (ψ
zd

(zi
t,di

t),hi
t-1), where t=T+1,...,T+H. The prior distribution 

of SocialVAE is conditioned and can be obtained from the LSTM state variable. The second term of 

Eq. 1 can be expressed as Eq. 2, where θ are parameters for a neural network to be optimized. 

 p(zi
t|di

T:t-1
,Oi

1:T
):=p

θ
(zi

t|hi
t-1

) (3) 

Latent Space Sampling: The first component of the integral shown in Eq. 1 suggests that new 

displacements are sampled from the prior distribution p, which depends on the latent variable zt
i and 

incorporates both observations and earlier displacements as reflected by ht-1
i

. Thus, di
t∼p

ξ
(⋅|zi

t,hi
t-1

) 

represents the sampled displacement. where zt
i , ht-1

i
  and ξ  denote conditioned latent variables, 

previous displacements and the observation sequence, respectively. Therefore, we can obtain 

xi
t=xi

T+ ∑ dt
τ=T+1 i

τ
 as a stochastic estimation for the spatial position at time t. 

Inference Model: To estimate the posterior distribution q over the latent variables, the entire GT 

observation sequence from O1:T+H
i

 is utilized. This is denoted by Eq. 3, where t ranges from T + 1 to 

T + H, and the initial state bT+H+1
i

=0. The backward state bt
i
 transmits GT trajectory data from T + H 
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down to t, forming the posterior by combining information from both the backward state bt
i
 and the 

forward state ht
i
. 

 bi
t
=g⃗⃖(Oi

t
,bi

t+1) (4) 

Observation Encoding: If there are multiple neighboring agents in the scene during the prediction 

process. We need to treat the local observation from agent i to the scene at time t = 2, ..., T as Eq. 4. 

This includes data from agent and a combined representation of all its neighboring agents. si
t is the 

self-state of agent i , nj|i
t   is the local state of neighbor agent j,f

s
,f

n
  are learnable feature extraction 

neural networks and wj
t|i is the attention mechanism weight if t ≤ T. 

 Oi
t
:=[fs(si

t), ∑ wj|i
t

j fn(nj|i
t )] (5) 

Training Loss: The VAE calculates the loss for backpropagation and network weight updates. The 

loss is a combination 

of several components:minθ L
kl

+Lmse+Ladv+Lkin 

- KL Loss: Measures the difference between the encoded distribution and a standard normal 

distribution. 

 Lkl=wKLDKL [q
ϕ
(zi

t|bi
t
,hi

t-1
))||p

θ
(zi

t|hi
t-1

)] (6) 

- Adversarial Loss: Penalizes predicted trajectories that come too close to neighboring trajectories, 

using Euclidean distance between the i-th predicted point and the j-th neighbor’s position, i.e. ei,j=ŷ
i
-

ni,j. 

 Ladv= ∑ ∑ exp (-√‖ei,j‖2
)M

j=1
N
i=1 ⋅

1

∑ exp(-√‖ei,k‖2
)M

k=1

 (7) 

- Average Weighted MSE: Weighted version of the mean squared error between original and 

reconstructed data. Let wt= exp ( -αt) be the weight for time step t, where α is the decay rate. 

 Lmse=
∑ wt

T
t=1 ∑ (N

i=1 ŷt,i-yt,i)
2

∑ wt
T
t=1

 (8) 

- Kinematic Loss: Penalizes deviations in velocities and angular velocities of the predicted 

trajectories, where d̂t,Δθt are the displacement and angular velocity at time t. 

 Lkin= ∑ ‖T-1
t=1 d̂t+1-d̂t‖2+ ∑ ‖T-2

t=1 Δθt+1-Δθt‖2 (9) 

Final Position Clustering (FPC): FPC is implemented to improve the diversity of trajectories. 

For each cluster, FPC selects the trajectory closest to the center, generating a diverse set of predictions, 

as shown in Fig. 3. This approach reduces prediction bias by avoiding the over-representation of 

trajectories from high-density regions. 

 

Figure 3 An example of FPC to extract 3 predictions from 9 candidates 

5. Experiments 

5.1. Implementation Details 

Dataset. To comprehensively evaluate autonomous vehicle (AV) decision-making in accident-

prone and ethically challenging situations, we utilize both real-world and synthetic data sources. The 

INTERACTION Dataset [9] provides diverse traffic scenarios from global intersections, roundabouts, 
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and highways, annotated with vehicle, pedestrian, and cyclist trajectories as well as traffic signal 

states. This allows realistic modeling of agent interactions, social compliance, and rare near-collision 

events. To extend scenario coverage to ethically sensitive and high-risk situations that rarely occur in 

real-world datasets, we construct synthetic scenarios using RoadRunner [10], a high-fidelity scene 

authoring tool. RoadRunner enables precise control over road topology, lane geometry, dynamic agent 

behaviors, static obstacles, and traffic signal configurations. 

Ethical scenarios are parameterized by agent attributes such as pedestrian age, mobility, and 

priority, vehicle passenger composition, initial lane positions, and compliance with traffic rules. This 

enables generation of forced-choice dilemmas, for instance, where the AV must select between 

colliding with a pedestrian, another vehicle, or a static obstacle. Generated scenarios capture 

variations in agent behavior, including sudden crossings, lane changes, and braking maneuvers, 

reflecting the stochastic nature of real traffic and potential ethical conflicts. SocialVAE [8] is then 

used to generate multimodal trajectories conditioned on historical observations and ethical parameters, 

incorporating attention mechanisms to model social interactions among agents and latent variables to 

represent uncertainty and multimodality. 

All scenarios, both real and synthetic, are executed in CARLA [4] to evaluate AV planners. Metrics 

such as collision rates, near-misses, traffic rule adherence, and comfort indices are recorded, and the 

impact of ethical parameters on AV decision-making is analyzed. Fig. 4 illustrates the full pipeline: 

real-world data from INTERACTION informs baseline scenarios, RoadRunner constructs synthetic 

ethical scenarios, SocialVAE generates agent trajectories, and CARLA executes the scenarios for 

evaluation. This hybrid approach enables rigorous testing of AV systems under realistic, accident-

prone, and ethically complex conditions. 
Algorithm 1 SocialVAE Structure 

1: class SocialVAE: 

2: function init (): 

3: Initialize model parameters 

4: Define sub-modules and RNNs 

5: function attention(q, k, mask): 

6: Compute & return attention weights 

7: function enc(x, neighbor, y): 

8: Compute social features 

9: Update RNN state 

10: Return final state 

11: function forward(x, neighbor, n predictions): 

12: if training then Call learn function 

13: Generate & return predictions 

14: function learn(x, y, neighbor): 

15: Encode inputs 

16: Compute & return errors and losses 

17: function loss(err, kl, L adv loss, avg weighted mse loss, Knematic loss): 

18: Compute & return total and individual losses 

 

Figure 4 Hybrid pipeline for ethical and accident-prone scenario generation.  

The real-world trajectories from the INTERACTION Dataset provide baseline data. RoadRunner 
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is used to construct synthetic scenarios with ethical annotations. SocialVAE generates multimodal 

agent trajectories conditioned on observations and ethical parameters. Scenarios are executed in 

CARLA for AV evaluation. 

Training. In [6], training was conducted on a computing cluster comprising an NVIDIA Titan 

RTX GPU and 12 Intel i7-7800X @3.5GHz CPUs, offering significantly greater computational power 

and memory than a personal computer. We utilized SocialVAE and a smaller dataset, making training 

feasible on a personal computer, while still achieving favorable results with the generated trajectories 

within hours. Hardware and parameters we used are listed in Tab. 1. Training losses are plotted in 

Fig. 6. 

Training. Training was conducted on a high-performance computing server equipped with an 

NVIDIA A100 GPU and dual Intel Xeon Gold 6230 CPUs @ 2.1GHz, providing substantial 

computational power and memory to efficiently handle SocialVAE training on the full dataset. This 

setup allowed training of the model with larger batch sizes and longer prediction horizons while 

maintaining reasonable runtime. Hardware specifications and hyperparameters are summarized in 

Tab. 1. Training losses are illustrated in Fig. 6. 

Table 1 SocialVAE Training and Hyperparameters on Professional Server. 

Hardware 

Parameter Value Parameter Value 

Computing 

Platform 
NVIDIA A100 GPU CPU 

2x Intel Xeon Gold 6230 

@ 2.1GHz 

GPU Memory 40GB RAM 256GB 

Hyperparameters 

Parameter Value Parameter Value 

Utilized Model SocialVAE Observation Radius 10000 

Prediction Time 

Steps 
25 Observation Time Steps 10 

RNN Hidden 

Layer Dim 
512 Latent Variable Dim 32 

Embedding Layer 

Dim 
128 Input Dim 2 

Feature Dim 256 Batch Size 512 

Learning Rate 1 × 10 -4 Weight Scaling Factor 0.1 

5.2. Qualitative Results of Scenario Generation with Ethical Considerations 

In this section, we present the qualitative results of our accident-prone traffic scenario 

generation, emphasizing ethical decision-making aspects. By combining SocialVAE-based 

trajectory generation with RoadRunner-constructed scenarios, our framework produces complex 

situations that challenge autonomous vehicle planners with respect to both safety and ethical 

considerations. The training reconstruction loss over epochs for SocialVAE is shown in Fig. 5.  

 
Figure 5 The training reconstruction loss over epochs for SocialVAE 
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The plot illustrates the convergence of the model during training on the INTERACTION and 

RoadRunner datasets, demonstrating stable optimization and gradual reduction in reconstruction 

error. 

 

Figure 6 Training losses of SocialVAE 

The variation trends of each loss term during training are shown in Fig.6, where the average 

weighted MSE loss, KL loss, and adversarial loss all steadily decrease with training steps, and 

the total loss exhibits a continuous convergence trend, verifying the stability and effectiveness 

of the model optimization. 

5.2.1. Intersection EP1 Scenario 

Fig. 7 shows the ego vehicle’s trajectory in the Intersection EP1 scenario, which is a multi-lane 

urban intersection with moderate traffic density. RoadRunner was used to construct dynamic traffic 

participants, including other vehicles with realistic acceleration and deceleration profiles. 

• Ethical Context: The ego vehicle faces a potential head-on collision with an oncoming vehicle 

if it maintains its planned lane. Alternatively, it could brake to avoid the collision, risking a rear-end 

impact with the trailing vehicle. This scenario tests the AV’s ability to weigh passenger safety against 

potential harm to other road users, a classic ethical dilemma in AV planning. 

• Generated Trajectories: SocialVAE outputs multiple plausible trajectories, ranging from 

aggressive maneuvers that maintain lane priority to conservative braking trajectories. The multi-

modal nature of SocialVAE captures the uncertainty in surrounding vehicles’ behavior and the 

resulting trade-offs in ego decisions. 

• Ethical Implication: The head-on collision trajectory highlights situations where strict 

adherence to traffic rules may endanger other participants, whereas the rear-end collision 

demonstrates the AV’s compromise between risk reduction and operational feasibility. These 

trajectories provide rich test cases for evaluating AV decision-making under ethical constraints. 

5.2.2. Roundabout FT Scenario 

Fig. 8 illustrates trajectories generated in a complex roundabout, featuring interactions with both 

other vehicles and pedestrians. RoadRunner was used to introduce dynamic pedestrians crossing the 

roundabout unexpectedly, enabling the generation of ethical conflict scenarios. 

• Ethical Context: The AV must balance pedestrian safety, compliance with traffic rules, and 

smooth traffic flow. In this scenario, the vehicle may need to perform sudden braking or lane 

adjustments to avoid a pedestrian, potentially causing minor collisions with other vehicles. 

• Generated Trajectories: SocialVAE generates a diverse set of trajectories, including: 

(1) Pedestrian avoidance: the ego vehicle decelerates sharply to prevent hitting a pedestrian, 

possibly leading to a rear-end collision. 

(2) Aggressive lane-maintaining: the vehicle maintains its lane and speed, resulting in a side-

impact with other vehicles or a near-miss with pedestrians. 

(3) Balanced maneuvering: the vehicle adjusts its trajectory smoothly, partially sacrificing lane 

adherence to minimize harm to all participants. 

• Ethical Implication: These trajectories illustrate the AV’s trade-offs among minimizing harm, 

following traffic laws, and maintaining operational efficiency. They allow researchers to evaluate the 

planner’s ethical reasoning and robustness in dynamic, multi-agent environments. 

 

8



 

 

5.2.3. Multiple Scenario Trajectory Visualization 

Fig. 9 shows a set of generated trajectories for both scenarios. Each color corresponds to a different 

predicted trajectory sampled from SocialVAE’s latent space, demonstrating the diversity of possible 

outcomes. 

• Trajectory Diversity: The figure emphasizes the multi-modality of the generated predictions. 

Even within the same scenario, the AV may choose distinct maneuvers based on latent variables 

capturing uncertainties in human driver behaviors and environmental conditions. 

• Ethical Scenario Representation: By visualizing multiple trajectories, we can analyze which 

ethical trade-offs are made under varying conditions, such as prioritizing pedestrian safety, reducing 

collisions with vehicles, or preserving smooth traffic flow. 

• Scenario Utility: These visualizations provide insight into edge cases where AVs face conflicting 

ethical objectives, making them valuable for evaluating planners and refining policy design. 

Overall, integrating SocialVAE with RoadRunner-generated scenarios produces ethically 

challenging traffic situations with realistic multi-agent interactions. This approach facilitates rigorous 

testing of autonomous vehicles, ensuring that planners are evaluated not only on collision avoidance 

but also on their decision-making under ethical uncertainty. 

 

Figure 7 Generated Trajectory in Intersection Scenario 

 

Figure 8 Generated Trajectory in Roundabout Scenario 
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Figure 9 Examples of generated accident-prone traffic scenarios. 

The (a) and (b) in Figure 9 depict head-on and rear-end collision trajectories of the ego vehicle in 

an intersection scenario. The (c) and (d) in Figure 9 show collisions involving pedestrians and side-

impact interactions in a roundabout scenario. These scenarios are constructed to evaluate autonomous 

vehicle decision-making under challenging ethical and safety-critical conditions. 

6. Discussion 

In this work, we have presented a framework for generating ethically challenging traffic scenarios 

using SocialVAE and RoadRunner, evaluated on real-world driving data from the INTERACTION 

Dataset. The qualitative results demonstrate that our approach can produce a diverse set of trajectories 

that highlight potential collisions, uncomfortable driving conditions, and ethical dilemmas, such as 

prioritizing pedestrian safety versus vehicle occupant safety. 

6.1. Ethical Implications 

The generated scenarios provide a systematic method to explore edge cases in autonomous driving 

where ethical decision-making is critical. Unlike conventional datasets that primarily focus on 

common driving situations, our approach intentionally produces rare and challenging interactions. By 

doing so, planners and reinforcement learning policies can be stress-tested for situations requiring 

moral trade-offs, such as deciding between potential harm to pedestrians versus nearby vehicles. This 

capability is crucial for the deployment of AVs in real-world conditions, where rare but high-impact 

events may determine public trust and regulatory acceptance. 

6.2. Trajectory Diversity and SocialVAE Efficacy 

SocialVAE demonstrates strong capability in modeling the multi-modal nature of agent 

trajectories. The stochastic latent variables allow sampling of multiple plausible futures for each agent, 

capturing uncertainties in human driving behavior and environmental interactions. The generated 

trajectories vary significantly in both ego vehicle behavior and outcomes, providing a rich testbed for 

evaluating AV decision-making under uncertainty. 

6.3. Scenario Construction with RoadRunner 

The integration of RoadRunner enables the creation of realistic, interactive, and repeatable 

scenarios. By designing environments with dynamic agents and ethical conflict points, we can 

systematically investigate planner robustness. The ability to programmatically manipulate agent 

behaviors and scenario layouts ensures reproducibility while still reflecting the stochastic nature of 

real traffic. 
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6.4. Limitations 

Despite the promising results, our framework has limitations. First, the ethical evaluation is 

qualitative; quantifying moral decisions remains challenging. Second, SocialVAE predictions are 

constrained by the historical data distribution and may not fully capture extremely rare behaviors. 

Third, RoadRunner scenarios, while realistic, may not account for all real-world variability, such as 

weather effects or sensor noise. 

6.5. Future Work 

Future research could extend this framework in several directions. One avenue is integrating 

explicit ethical reasoning modules into the trajectory planning stage, enabling the AV to weigh ethical 

trade-offs quantitatively. Another direction is combining additional datasets, including diverse traffic 

cultures and conditions, to improve generalization. Finally, closed-loop testing in simulated 

environments with full AV control could validate the practical effectiveness of the generated ethical 

scenarios, bridging the gap between scenario generation and autonomous vehicle deployment. 

Overall, our study highlights the importance of ethically-aware scenario generation for 

autonomous vehicles. By leveraging SocialVAE, RoadRunner, and real-world datasets, we provide a 

methodology to systematically stress-test planners and reinforce safe and socially acceptable AV 

behavior. 
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Appendix 

Appendix A. The Video Frame Sampling Visualization is shown in Figure 10. 

 

Figure 10 Visualization of frames sampled from the video at 2 frames per second. Each row 

contains 5 frames. This provides an overview of the temporal evolution of the scenario and 

highlights key moments captured for scenario generation analysis. 
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